Trait

org.locationtech.rasterframes.functions

AggregateFunctions

Related Doc: package functions

Permalink

trait AggregateFunctions extends AnyRef

Functions associated with computing columnar aggregates over tile and geometry columns.

Linear Supertypes
Known Subclasses
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. AggregateFunctions
  2. AnyRef
  3. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  5. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  6. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  7. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  8. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  9. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  10. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  11. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  12. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  13. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  14. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  15. def rf_agg_approx_histogram(col: Column, numBuckets: Int): TypedColumn[Any, CellHistogram]

    Permalink

    Compute the approximate aggregate floating point histogram using a streaming algorithm, with the given number of buckets.

  16. def rf_agg_approx_histogram(tile: Column): TypedColumn[Any, CellHistogram]

    Permalink

    Compute the approximate aggregate floating point histogram using a streaming algorithm, with the default of 80 buckets.

  17. def rf_agg_approx_quantiles(tile: Column, probabilities: Seq[Double], relativeError: Double = 0.00001): TypedColumn[Any, Seq[Double]]

    Permalink

    Calculates the approximate quantiles of a tile column of a DataFrame.

    Calculates the approximate quantiles of a tile column of a DataFrame.

    tile

    tile column to extract cells from.

    probabilities

    a list of quantile probabilities Each number must belong to [0, 1]. For example 0 is the minimum, 0.5 is the median, 1 is the maximum.

    relativeError

    The relative target precision to achieve (greater than or equal to 0).

    returns

    the approximate quantiles at the given probabilities of each column

  18. def rf_agg_data_cells(tile: Column): TypedColumn[Any, Long]

    Permalink

    Computes the number of non-NoData cells in a column.

  19. def rf_agg_extent(extent: Column): TypedColumn[Any, Extent]

    Permalink

    Compute the aggregate extent over a column.

    Compute the aggregate extent over a column. Assumes CRS homogeneity.

  20. def rf_agg_local_data_cells(tile: Column): TypedColumn[Any, Tile]

    Permalink

    Compute the cellwise/local count of non-NoData cells for all Tiles in a column.

  21. def rf_agg_local_max(tile: Column): TypedColumn[Any, Tile]

    Permalink

    Compute the cell-wise/local max operation between Tiles in a column.

  22. def rf_agg_local_mean(tile: Column): TypedColumn[Any, Tile]

    Permalink

    Compute the cellwise/local mean operation between Tiles in a column.

  23. def rf_agg_local_min(tile: Column): TypedColumn[Any, Tile]

    Permalink

    Compute the cellwise/local min operation between Tiles in a column.

  24. def rf_agg_local_no_data_cells(tile: Column): TypedColumn[Any, Tile]

    Permalink

    Compute the cellwise/local count of NoData cells for all Tiles in a column.

  25. def rf_agg_local_stats(tile: Column): TypedColumn[Any, LocalCellStatistics]

    Permalink

    Compute cell-local aggregate descriptive statistics for a column of Tiles.

  26. def rf_agg_mean(tile: Column): TypedColumn[Any, Double]

    Permalink

    Computes the column aggregate mean.

  27. def rf_agg_no_data_cells(tile: Column): TypedColumn[Any, Long]

    Permalink

    Computes the number of NoData cells in a column.

  28. def rf_agg_overview_raster(tile: Column, tileExtent: Column, tileCRS: Column, cols: Int, rows: Int, areaOfInterest: Extent, sampler: ResampleMethod): TypedColumn[Any, Tile]

    Permalink

    Construct an overview raster of size colsxrows where data in tile intersects the areaOfInterest in web-mercator.

    Construct an overview raster of size colsxrows where data in tile intersects the areaOfInterest in web-mercator. Allows specification of one of these sampling methods:

    • geotrellis.raster.resample.NearestNeighbor
    • geotrellis.raster.resample.Bilinear
    • geotrellis.raster.resample.CubicConvolution
    • geotrellis.raster.resample.CubicSpline
    • geotrellis.raster.resample.Lanczos
  29. def rf_agg_overview_raster(tile: Column, tileExtent: Column, tileCRS: Column, cols: Int, rows: Int, areaOfInterest: Extent): TypedColumn[Any, Tile]

    Permalink

    Construct an overview raster of size colsxrows where data in tile intersects the areaOfInterest in web-mercator.

    Construct an overview raster of size colsxrows where data in tile intersects the areaOfInterest in web-mercator. Uses nearest bi-linear sampling method.

  30. def rf_agg_overview_raster(proj_raster: Column, cols: Int, rows: Int, areaOfInterest: Extent): TypedColumn[Any, Tile]

    Permalink

    Construct an overview raster of size colsxrows where data in proj_raster intersects the areaOfInterest in web-mercator.

    Construct an overview raster of size colsxrows where data in proj_raster intersects the areaOfInterest in web-mercator. Uses bi-linear sampling method.

  31. def rf_agg_reprojected_extent(extent: Column, srcCRS: Column, destCRS: CRS): TypedColumn[Any, Extent]

    Permalink

    Compute the aggregate extent over a column after reprojecting from the rows source CRS into the given destination CRS .

  32. def rf_agg_stats(tile: Column): TypedColumn[Any, CellStatistics]

    Permalink

    Compute the full column aggregate floating point statistics.

  33. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  34. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  35. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  36. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  37. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from AnyRef

Inherited from Any

Ungrouped